INDEX

Abbott, James, 135 (Exercise 4-1)
aberration of starlight, 81 (Exercise 3-9)
absolute elsewhere, 181
"absolute" space and time (Newton), 160, 284
abuse of the concept of mass, 244-251 (Section 8.8)
acceleration, relative, as witness to gravity, 30-36 (Sections 2.3, 2.4), 280-287 (Sections 9.4, 9.5, 9.6)
acceleration-proof clocks, 152
active future, 182
addition of velocities, 82-84 (Exercise 3-11), 103-110
(Section L.7)
Aging, Principle of Maximal, 150
Akihito, Emperor of Japan, 138
American Civil War, 25
Andromeda galaxy
Enterprise in, 106-107 (Box L-2)
trip to by rocket, 22-23 (Exercise 1-9)
trip to by Transporter, 23 (Exercise 1-10)
angles, transformation of, 114-115 (Exercise L-6)
annihilation, positron-electron, 237-238, 242-243
(Sample Problem 8-4), 260 (Exercises 8-14, 8-15)
appearance, visual, of relativistic objects, 64, 92-93 (Exercise 3-17)
Arecibo radio antenna (Puerto Rico), 291
arrow of momenergy, 191-195 (Section 7.2)
autobiography of a photon, 184-185 (Exercise 6-4)
available interaction energy, 261 (Exercise 8-17)
backyard zoo of particles, 235 (Box 8-1)
bad clock, 112-113 (Exercise L-2)
barn and pole paradox, 166 (Exercise 5-4)
Bartlett, Steven, 19
Bay of Fundy, tides in, 32-33 (Box 2-1)
Berman, Eric, 254 (Exercise 8-1)
beta (Greek β), symbol for speed, 41, 253
Betrayal, Great, 108-109 (Box L-1)
black hole, 289 (Box 9-2), 292-295 (Section 9.8)
as source of neutrinos, 80 (Exercise 3-8)
bomb
fission, 249
hydrogen (fusion), 248-249
Super, 108-109 (Box L-1)
bounce, free-float, 45 (Exercise 2-2)
Braginsky, Vladimir, 36, 223
broadening of spectral lines, Doppler, 264 (Exercise 8-25) bulb
flickering, paradox of, 186-187 (Exercise 6-7)
speeding, 264 (Exercise 8-21)
c (speed of light), see light speed
Caesar, Julius, 106-107 (Sample Problem L-2)
cannonball, human, 45 (Exercise 2-1)
Canopus, trip to, 121-134 (Chapter 4)
cat, Cheshire, 292
causality, light speed limit on, 171 (Section 6.1), 180-183
center of momentum frame, 246-251
Čerenkov radiation, 80-81 (Exercise 3-8)
Chandrasekhar, S., 288
Chandrasekhar limit, 288-289 (Box 9-2)
chemistry, relativistic, 254 (Exercise 8-2)
Civil War, American, 25
Cleopatra, 228
clock
acceleration-proof, 152
atomic, test of twin effect, 131
bad, 112-113 (Exercise L-2)
construction of, 78 (Exercise 3-3)
light-flash, 12
reference, 37
clock paradox, see Twin Paradox
clocks
latticework of, 37-39 (Section 2.6), 45-46 (Exercises 2-3, 2-4)
plane of agreement of, 120 (Exercise L-15)
run at different rates in gravitational field, 118 (Exercise L-13)
"run slow?", 76-77 (Box 3-4)
collapse, gravitational, 288, 292-295 (Section 9.8)
colliders, 261-262 (Exercise 8-17)
collision, 221-252 (Chapter 8)
analyzing, 239 (Box 8-2)
elastic, 222, 240-241 (Sample Problem 8-3)
inelastic, 222-223
solving problems, 239 (Box 8-2)
comet, 35
communication, time delay in, 39-40
communications storm, 48 (Exercise 2-11)
compact stellar objects, 288-289 (Box 9-2)
components of momenergy, 195-199 (Section 7.3)
energy, 201-206 (Section 7.5)
momentum, 199-200 (Section 7.4)
Compton, Arthur Holly, 229
Compton scattering, 229, 231, 267-268 (Exercise 8-29)
examples of, 268 (Exercise 8-30)
inverse, 269-270 (Exercise 8-32)
computer size, 22 (Exercise 1-8)
cone, light, partition in spacetime, 177-183 (Section 6.3)
conscience-guided satellite, 277-279
conservation laws, see energy; momentum; momenergy
conserved, defined, 208-209 (Box 7-3)
constant, defined, 208-209 (Box 7-3)
contracting train paradox, 187-188 (Exercise 6-8)
contraction, Lorentz, 63-65 (Section 3.5), 126-127
(Section 4.7)
for cosmic rays, 215-216 (Exercise 7-7)
described by stretch factor, 157
how it occurs, 119-120 (Exercise L-14)
or rotation?, 92-93 (Exercise 3-17)
conversion factors
for energy, 203, 250
miles to meters, 2, 16, 58-59 (Box 3-2)
for momentum, 200
seconds to meters, 6, 12, 16, 58-59 (Box 3-2)
conversion of mass to energy, 237-244 (Section 8.7), 254 (Exercise 8.1)
cosmic rays, 160, 215-216 (Exercise 7-7)
cosmos, 296-297 (Section 9.9)
creation of proton-antiproton pair by an electron, 261
(Exercise 8-16)
curvature
of Earth, 281-283 (Section 9.5)
equation, Einstein's, 286
of spacetime, 280-287 (Sections 9.4, 9.5, 9.6)
Daytime surveyor, 1-4 (Section 1.1), 16-17 (Box 1-1) decay
mu meson, 23-24 (Exercise 1-11)
pi-naught meson, 267 (Exercise 8-28)
pi-plus meson, 24 (Exercise 1-12)
positronium, 260 (Exercise 8-13)
deflection of starlight by Sun, 50-51 (Exercise 2-13)
density of companion of Sirius, 258-259 (Exercise 8-7)
detonator paradox, 185-186 (Exercise 6-5)
deuterium, combined with helium, 237
Dicke experiment, 36, 48-50 (Exercise 2-12)
dimension, transverse, invariance of, 65-67 (Section 3.6) distance
invariance of, 4, 17
proper, 174
dog and passenger paradox, 25-26
Dog Star (Sirius), 135 (Exercise 4-1), 258-259 (Exercise 8-7)
Doppler shift
along x-direction, 114 (Exercise L-5), 263 (Exercise 8-18)
at limb of Sun, 264 (Exercise 8-22)
$E=m c^{2}$ from, 264-265 (Exercise 8-26)
equations, 263 (Exercise 8-19)
line broadening, 264 (Exercise 8-25)
measurement of by resonant scattering, 271-272
(Exercise 8-36)
Twin Paradox using, 264 (Exercise 8-24)
down with relativity!, 79 (Exercise 3-6)
DUMAND experiment, 80 (Exercise 3-8)
dwarf, white, 258-259 (Exercise 8-7), 288 (Box 9-2)
$E=m c^{2}, 203,206,250$
from Doppler shift, 264-265 (Exercise 8-26)
Earth
curved, 281-283 (Section 9.5)
mass in units of meters, 258
surface of as a free-float frame, 46 (Exercise 2-5)
Eigenzeit, 11; see also proper time
Einstein, Albert
admiration for Newton, 284, 295
curvature equation, 286
eliminate gravity, 28
epigram, iii
equivalence of energy and mass, 250, 254-258
(Exercise 8-5)
and Galileo and Newton, 275-276 (Section 9.2)
and gravity, 275-298 (Chapter 9)
happiest thought of life, 25, 44
picture and quotes, 295
special relativity, 5
Train Paradox, 62-63
Einstein puzzler, 78 (Exercise 3-2)
elastic collision, 222, 240-241 (Sample Problem 8-3)
electrodynamics, quantum, 185 (Exercise 6-4)
electron, 235 (Box 8-1)
creation of proton-antiproton pair by, 261 (Exercise 8-16)
electron-positron annihilation, 237-238, 242-243
(Sample Problem 8-4), 260 (Exercises 8-14, 8-15)
electron-positron pair production, see photon
electrons, fast, 215 (Exercise 7-6)
elsewhere, absolute, 181
Emperor Akihito, 138
Emperor Hirohito, 137
emptiness of spacetime, 56-57 (Box 3-1)
encounter, particle, 239 (Box 8-2)
energy, 196, 213 (Table 7.1)
conserved in a collision, 189-190 (Section 7.1), 207, 222-223 (Section 8.2), 239 (Box 8.2)
conversion of mass to, 237-244, (Section 8.7), 254
(Exercise 8-1)
interaction, 261 (Exercise 8-17)
kinetic, 201, 203, 206
Newtonian, low-velocity limit, 190, 203, 205 (Box 7-2)
and mass, 201, 203, 206, 250-251, 254-258
(Exercise 8-5)
production of, in Sun, 242-245 (Sample Problem 8-5)
quantities related to, 213 (Table 7-1)
rest, 201, 203, 250
shift of, due to recoil of emitter, 270 (Exercise 8-33)
threshold, 236, 259 (Exercise 8-12), 261 (Exercise 8-16)
as "time" part of momenergy, 201-206 (Section 7.5)
transformation of, 215 (Exercise 7-5)
in unit of mass, 190, 203
without mass (photon), 228-233 (Section 8.4), 273-274 (Exercise 8-40)
energy of light, 230
energy of photon and frequency of light, 268-269 (Exercise 8-31)
Engelsberg, Stanley, 45-46 (Exercise 2-4)
Enterprise, Starship, 106-107
Eötvös, Baron Roland von, 36
equivalence of energy and mass, 250, 254-258 (Exercise 8-5)
ether theory of light propagation, 84,88
Euclidean 3-vector, 192 (Box 7-1)
Euclidean geometry, $8,11,126,143,151,172,177$, 192 (Box 7-1), 198, 279
event, 10,16
and interval, 9-11 (Section 1.3)
locating, with latticework of clocks, 37-39 (Section 2.6)
not owned by any frame, 43
reference, 38
events
relation between, 11, 172-177 (Section 6.2)
time of, 38, 137-139 (Section 5-1)
evidence, experimental, for Twin Paradox 131-134 (Section 4.10)
expanding universe, 82 (Exercise 3-10), 264 (Exercise 8-23), 296-297 (Section 9.9)
experimental evidence for Twin Paradox, 131-134 (Section 4.10), 272-273 (Exercise 8-39)
fast electrons, 215 (Exercise 7-6)
fast protons, 214-215 (Exercise 7-4)
faster than light?, see light, faster than?
Federation, 108-109 (Box L-1)
Feynman, Richard, 1
firing meson, 110 (Sample Problem L-3)
fission, 237-238
bomb, 249
Fizeau experiment, 120 (Exercise L-16)
flash, reference, 38
flickering bulb paradox, 186-187 (Exercise 6-7)
floating to Moon, 25-26 (Section 2.1)
force of gravity, eliminate, 26-29 (Section 2.2)
four times light speed, 89 (Exercise 3-15)
four-vector, momenergy as, 191-195 (Section 7.2)
frame
center of momentum, 246-251
Earth, 46 (Exercise 2-5)
free-float, see free-float frame
inertial, see free-float frame
laboratory, 5, 41
local, see free-float frame

Lorentz, see free-float frame reference, 5 ; see also free-float frame rocket, 41-43 (Section 2.9) super-rocket, 69, 71, 140-142
free float, 25-45 (Chapter 2)
free-float bounce, 45 (Exercise 2-2)
free-float (inertial) frame, 26-29 (Section 2.2)
defined, 31
Earth surface as, 46 (Exercise 2-5)
extent of, near Earth, 30-34 (Section 2.3), 46 (Exercise 2-6), 47 (Exercise 2-8), 285
extent of, near Moon, 46-47 (Exercise 2-7)
local, 30-34 (Section 2.3), 284
rocket, 41-43 (Section 2.9)
stripped down, 121-122 (Section 4.2)
super-rocket, 69, 71, 140-142
and test of twin effect, 133
touring spacetime without, $160-162$ (Section 5.9)
verifying, 41,279
what is same in different, $60-62$ (Section 3.3)
what is not same in different, 56-60 (Section 3.2)
frequency of light and energy of a photon, 268-269
(Exercise 8-31)
Fundy, Bay of, 32-33 (Box 2-1)
fusion, 237-238
fusion bomb, 248-249
future, active, 182

Galilean principle of relativity, 53-55
Galilean transformation, 113 (Exercise L-3)
Galilei, Galileo
and gravitational acceleration, 36
and Newton and Einstein, 275-276 (Section 9.2)
picture and quotes, 54
and Leaning Tower of Pisa, 36
and Principle of Relativity, 53-55
and tides, 32
gamma (Greek γ), stretch factor, 99, 155-160 (Section 5.8)
gamma rays, 237 ; see also photon
General Conference on Weights and Measures, 12, 58
general relativity, 275-298 (Chapter 9)
needed for Twin Paradox?, 132 (Box 4-1)
when required, $34,35,133,276,281$
geometry
Euclidean, 8, 11, 126, 143, 151, 172, 177, 192
(Box 7-1), 198, 279
curved space, 280-281 (Section 9.4),
curved spacetime 284-287 (Section 9.6)
Lorentz, 8, 11, 126, 143, 151, 172, 177, 192
(Box 7-1), 198, 284
gigaflop, 22 (Exercise 1-8)
gravitation
effect of on clocks, 118 (Exercise L-13)
as curvature of spacetime, 284-287 (Section 9.6) tutorial in Newtonian, 258 (Exercise 8-6)
gravitational attraction of system containing photons, 257
gravitational collapse, 288, 292-295 (Section 9.8)
gravitational radiation, 288-292 (Section 9.7)
gravitational red shift, 258 (Exercise 8-6)
test of, 272 (Exercises 8-37, 8-38)
graviton, 153, 176
gravity
as curved spacetime, 284-287 (Section 9.6)
in brief, 275 (Section 9.1)
eliminate, 28-29 (Section 2.2)
radiation, 288-292 (Section 9.7)
relative acceleration as witness to, 30-36 (Sections
2.3, 2.4), 280-287 (Sections 9.4, 9.5, 9.6)
waves, 288-292 (Section 9.7)
Great Betrayal, 108-109 (Box L-1)
Great Pyramid, 209
grid, paradox of skateboard and, 116-117 (Exercise L-12)
h, Planck's constant, 265, 268-269 (Exercise 8-31)
handle showing invariant magnitude of momenergy vector, 198
headlight effect, 115 (Exercise L-9)
heat
as system property, 224
weighing, 223
helium in Sun, 242-245 (Sample Problem 8-5)
Himalaya Mountains, 48-49
Hirohito, Emperor of Japan, 137
hole, black, 289 (Box 9-2), 292-295 (Section 9.8)
as source of neutrinos, 80 (Exercise 3-8)
Horwitz, Paul, 186 (Exercise 6-6)
Hubble, Edwin, 264
Hubble constant, 264
Hubble time, 264
Hull, Penny, 19, 264, 272
Hulse, Russell A., 291
human cannonball, 45 (Exercise 2-1)
hydrogen bomb, 248-249
hydrogen burning in Sun, 242-245 (Sample Problem 8-5)
hydrogen molecule ion, 233
hyperbola
invariant, 143 (Section 5.3), 173-174
momenergy, 198
identically accelerated twins paradox, 117-118 (Exercise L-13)
index of refraction and speed of light, 185 (Exercise 6-4)
inelastic collision, 222-223
inertia, 31, 189
inertial frame, see free-float frame
integrity of photon, 259 (Exercise 8-11)
interaction energy, available, 261 (Exercise 8-17)
interferometer
Fizeau, 120 (Exercise L-16)

Kennedy - Thorndike, 86-88 (Exercise 3-13)
Michelson-Morley, 84-86 (Exercise 3-12)
verifying free-float frame using, 46 (Exercise 2-5)
interstellar travel, 274 (Exercise 8-41)
interval, 6
and event, 9-11 (Section 1.3)
invariance of, see invariance of interval
as lightlike relation between events, 175-177
as spacelike relation between events, 11, 173-174
as timelike relation between events, 11, 172-173
invariance of distance, 4,17
invariance of interval, 6-7, 17, 18
for all free-float frames, 71-73 (Section 3.8)
preserves cause and effect, 180-183
proved, 67-70 (Section 3.7)
and spacetime hyperbola, 143 (Section 5.3), 173, 174
and spacetime map, 143 (Section 5.3)
used in derivation of the Lorentz transformation, 102
invariance of mass, 197, 246
invariance of momenergy, 194, 198, 210
invariance of speed of light, 60; 86-88 (Exercise 3-13)
invariance of transverse dimension, 65-67 (Section 3.6)
invariant, defined, 208-209 (Box 7-3)
invariant hyperbola, 143 (Section 5.3), 173, 174
inverse Compton scattering, 269-270 (Exercise 8-32)
inverse Lorentz transformation, 102-103 (Section L.6)
Japan, 27, 96-97, 161
Japan Microgravity Center (JAMIC), 27 (Figure 2-3)
Julius Caesar, 106-107 (Sample Problem L-2)
K^{+}-meson, 72 (Sample Problem 3-2)
Kamisunagawa, 27
Kennedy - Thorndike experiment, 86-88 (Exercise 3-13)
Kepler, Johannes, 32
kinetic energy, 201, 203, 206
kinked worldline, 152-155 (Section 5.7)
Klingons, 108-109 (Box L-1)
Krotkov, Robert V., 36
laboratory frame, 5, 41
lattice clocks, synchronizing, 37-38, 45-46, (Exercises 2-3, 2-4)
latticework of clocks, 37-39 (Section 2.6)
Law of Addition of Velocities, 82-84 (Exercise 3-11), 103-110 (Section L.7)
laws, conservation, see energy; momentum; momenergy
Laws, Kenneth L., 77
Leaning Tower of Pisa, 36
length
mass in units of, 258 (Exercise 8-6)
time in units of, 11-13 (Section 1.4)
length along a path, 147-148 (Section 5.5)
length contraction, see Lorentz contraction
less is more, 154-155 (Sample Problem 5-1), 163-164
(Exercise 5-1)
light
deflection of by Sun, 50-51 (Exercise 2-13)
frequency of and energy of a photon, 268-269
(Exercise 8-31)
gravitational red shift of, 258-259 (Exercises 8-6, 8-7)
pressure of, 254 (Exercise 8-3), 255
rocket propelled by, 274 (Exercise 8-41)
speed of, see light speed
See also photon
light, faster than?, 74-75 (Box 3-3), 96-99 (Section
L.2), 108-109 (Box L-1), 122-123 (Section 4.3)
four times the speed of light?, 89-90 (Exercise 3-15)
superluminal expansion of quasar 3C273?, 90-92
(Exercise 3-16)
things that move faster than light, 88-89 (Exercise 3-14)
light bulb
flickering, 186-187 (Exercise 6-7)
speeding, 264 (Exercise 8-21)
light cone as partition in spacetime, 177-183 (Section 6.3)
light-flash clock, 12
lightlike relation between events, 172-177 (Section 6.2)
light propagation, ether theory of, 84,88
light speed
as conversion factor, $6,12,16,58-59$ (Box 3-2), 200, 203, 250
index of refraction and, 185 (Exercise 6-4)
invariant magnitude of, 60 (Kennedy-Thorndike experiment), 86-88 (Exercise 3-13)
isotropic (Michelson-Morley experiment), 84-86 (Exercise 3-12)
as limit on causality, 171 (Section 6.1), 180-183
as limit on observation, 39-40
See also light, faster than?
light-second, 11-13 (Section 1.4)
light-year, 12
limb of Sun, Doppler shift at, 264 (Exercise 8-22)
limits of Newtonian mechanics, 34, 113-114 (Exercise
L-4), 217 (Exercise 7-11)
line, world, see worldline
line broadening, Doppler, 264 (Exercise 8-25)
linear accelerator, Stanford, 215 (Exercise 7-6)
local inertial frame, see free-float frame
local moving orders for mass, 277-280 (Section 9.3)
local time, see proper time; interval
locating events with latticework, 37-39 (Section 2.6)
Lorentz, Hendrik, 5
Lorentz contraction, 63-65 (Section 3.5), 126-127
(Section 4.7)
for cosmic rays, 216 (Exercise 7-7)
described by stretch factor, 157
how it occurs, 119-120 (Exercise L-14)
or rotation, 92-93 (Exercise 3-17)
Lorentz frame, see free-float frame

Lorentz-FitzGerald contraction hypothesis, 88
Lorentz geometry, 8, 11, 126, 143, 151, 172, 177, 192
(Box 7-1), 198, 284
Lorentz interval, 6; see also interval; invariance of interval
Lorentz transformation, 95-111 (Special Topic) equations, 102
form of, 100 (Section L.4)
inverse equations, 102-103 (Section L.6)
for momenergy components, 215 (Exercise 7-5)
usefulness of, 95 (Section L.1)
manhole, paradox of rising, 116 (Exercise L-11)
map, spacetime, see spacetime map
mapmaking
in space, 10, 21-22 (Exercise 1-6)
in spacetime, 164-166 (Exercise 5-3)
mass
abuse of the concept of, 244-251 (Section 8.8)
change in nuclear, 237-238
conversion of to energy, 237-244 (Section 8.7),
254 (Exercise 8-1)
created by material particle, 234-236 (Section 8.6)
created by photon, 233-234 (Section 8.5)
and energy, 201, 203, 206, 250-251, 254-258
(Exercise 8-5)
energy in unit of, 190, 203
energy without (photon), 228-233 (Section 8.4)
invariance of, 197, 246
local moving orders for, 277-280 (Section 9.3)
loss by Sun of, 242-245 (Sample Problem 8-5)
as magnitude of momenergy 4 -vector, 195, 197
momentum in unit of, 190, 200
momentum without?, 273-274 (Exercise 8-40)
photon used to create, 233-234 (Section 8.5)
proof, 277, 279
"relativistic," 250-251
"rest," 251
as unit of length, 258 (Exercise 8-6)
use and abuse of the concept of, 244-251 (Section 8.8)
mass of photon, 230
mass of system of particles, 214 (Exercise 7-2), 224-228
(Section 8.3), 247
Maximal Aging, Principle of, 150
maximum speed of walking, 186 (Exercise 6-6)
mechanics
Newtonian, 113-114 (Exercise L-4), 192 (Box
7-1), 217 (Exercise 7-11)
relativistic, 192 (Box 7-1)
megaflop, 22 (Exercise 1-8)
meson
decay of pi-naught, 267 (Exercise 8-28)
firing, 110 (Sample Problem L-3)
time stretching with, 23-24 (Exercise 1-11), 24
(Exercise 1-12), 72-73 (Sample Problem 3-2)

308 INDEX

meter
defined, 58-59 (Box 3-2)
of time, 11-13 (Section 1.4)
as unit of mass, 258 (Exercise 8-6)
meter stick, tilted, 115-116 (Exercise L-10)
Michelson-Morley experiment, 84-86 (Exercise 3-12)
microgravity, 27 (Figure 2-3), 277 (Figure 9-2)
Minkowski, Hermann, 15
mile
defined, 58-59 (Box 3-2)
as sacred unit, 1-4
minus sign, 6-8, 26, 190, 197
minute, unit of distance and time, 11-13 (Section 1.4)
momenergy
as 4 -vector, 191, 192 (Box 7-1)
analogy of to tree, 210
arrow, 191-195 (Section 7.2)
components of, 195-199 (Section 7.3), 204
(Sample Problem 7-3)
conservation of, 189-190 (Section 7.1), 207-210
(Section 7.6), 247
defined, 191-195 (Section 7.2)
energy as "time" part of, 201-206 (Section 7.5)
handle showing invariant magnitude, 198
invariance of, 194, 198, 210
magnitude of is mass, 195, 197
momentum as "space" part of, 199-200 (Section 7.4)
quantities related to, 213 (Table 7-1)
tree, analogy of, 210
transformation of components of, 215 (Exercise 7-5)
units of, 194, 195, 200, 203
momentum, 196, 213 (Table 7.1)
components of, 196
conserved in a collision, 189-190 (Section 7.1),
207, 222-223 (Section 8.2), 239 (Box 8.2)
derived from conservation law, 217-219 (Exercise 7-12)
of light, 230
Newtonian expression for, 190, 200
as "space" part of momenergy, 199-200 (Section 7.4)
transformation of, 215 (Exercise 7-5)
in unit of mass, 190, 200
without mass?, 273-274 (Exercise 8-40)
momentum-energy 4 -vector, see momenergy
Moon, 25-26 (Section 2.1), 32-33 (Box 2-1)
Moral Principle, Wheeler's First, 20
Mössbauer effect, 270
Minkowski, Hermann, 15
more is less, 154-155 (Sample Problem 5-1), 163-164
(Exercise 5-1)
moving orders for mass, local, 277-280 (Section 9.3)
muons, time stretching with, 23 (Exercise 1-11)
nanosecond, 5
Neptune, images from, 20 (Exercise 1-2)
neutral or unreachable region, 182
neutrino
described, 235 (Box 8-1)
detection of, 80 (Exercise 3-8)
neutron, described, 235 (Box 8-1)
neutron star, 288-289 (Box 9-2) and gravity waves, 290-291
Newton, Isaac, 275-280
absolute space and time, 160, 284
Einstein's admiration for, 284, 295
First Law of Motion, 31
and Galileo and Einstein, 275-276 (Section 9.2) picture and quotes, 278
Newtonian mechanics, 192 (Box 7-1)
First Law of Motion, 31
gravitational theory, tutorial, 258 (Exercise 8-6)
limits of, 34, 113-114 (Exercise L-4), 217 (Exercise 7-11)
Nighttime surveyor, 1-4 (Section 1.1), 16-17 (Box 1-1) nuclear excitation, 259 (Exercise 8-8)
observer, 39-40 (Section 2.7)
oozing!, 12
oscillator, relativistic, 135-136 (Exercise 4-3)
oscilloscope writing speed, 89 (Exercise 3-14)
pair production by photon(s), 233-234 (Section 8.5), 259 (Exercises 8-11, 8-12)
Parable of the Surveyors, 1-4 (Section 1.1), 16-17 (Box 1-1)
Parable of the Two Travelers, 281-283 (Section 9.5)
paradoxes
contracting train, $187-188$ (Exercise 6-8)
detonator, 185-186 (Exercise 6-5)
Einstein's train, 62-63
flickering bulb, 186-187 (Exercise 6-7)
four times light speed, 89 (Exercise 3-15)
identically accelerated twins, 117-118 (Exercise L-13)
passenger and dog, 25-26
pole and barn, 166 (Exercise 5-4)
rising manhole, 116 (Exercise L-11)
runner on the train, 168 (Exercise 5-7)
scissors, 88 (Exercise 3-14)
skateboard and grid, 116-117 (Exercise L-12)
space war, 79-80 (Exercise 3-7)
tilted meter stick, 115-116 (Exercise L-10)
See also Twin Paradox
particle, test, 36 (Section 2.5), 47-48 (Exercise 2-10)
particles
backyard zoo of, 235 (Box 8-1)
creation of, 234-236 (Section 8.6), 261-262 (Exercises 8-16, 8-17)
creation of by photons, 233-234 (Section 8.5), 259-260 (Exercises 8-11 and 8-12)
encounter, 239 (Box 8-2)
measuring speed of, 40-41 (Section 2.8)
system of, 214 (Exercise 7-2), 221 (Section 8.1), 224-228 (Section 8.3), 244-251 (Section 8-8)
timelike worldline of, 172
used to create mass, 234-236 (Section 8.6)
virtual, 56-57
worldline of, 143-147 (Section 5.4)
partition in spacetime, light cone as, 177-183 (Section 6.3)
passenger and dog paradox, 25-26
passive past, 182
path, length along, 147-148 (Section 5.5)
Peace Treaty of Shalimar, 108-109 (Box L-1)
Philoponus, John, of Alexandria, 36
photon, 228-233 (Section 8.4), 246
from annihilation, 237-238 (Section 8.7)
autobiography of, 184-185 (Exercise 6-4)
braking, 259 (Exercise 8-9)
Compton scattering of, 229, 231, 267-270 (Exercises 8-29, 8-30, 8-32)
creation of particle-antiparticle pair using, 233234 (Section 8.5)
energy of, 228-233 (Section 8.4), 268-269 (Exercise 8-31)
energy measurement of, 254 (Exercise 8-4)
energy shift of due to recoil of emitter, 270 (Exercise 8-33)
gravitational red shift of, 258-259 (Exercises 8-6 and 8-7)
integrity of, 259 (Exercise 8-11)
mass of, 228-231 (Section 8.4)
momentum of, 230
pair production by, 233-234 (Section 8.5), 259260 (Exercises 8-11, 8-12)
resonant scattering of, 271-272 (Exercises 8-35, 8-36)
rocket and interstellar travel, 274 (Exercise 8-41)
used to create mass, 233-234 (Section 8.5)
physicist and the traffic light, 263-264 (Exercise 8-20)
pi-naught meson, decay of, 267 (Exercise 8-28)
pipes, speeding (thought experiment), 66
pi-plus mesons, time stretching with, 24 (Exercise 1-12)
Pisa, Leaning Tower of, 36
place, fundamental to surveying, 9, 16
plane of agreement of clocks, 120 (Exercise L-15)
Planck, Max, 229
Planck's constant, 265, 268-269 (Exercise 8-31)
plumb bob, deflection of by Himalaya Mountains, 48-49
Poincaré, Henri, 5-6
pole and barn paradox, 166 (Exercise 5-4)
polyelectron, 233
positron, 233-235
positron-electron annihilation, 237-238, 242-243
(Sample Problem 8-4), 260 (Exercises 8-14, 8-15)
positron-electron pair production, 233-234 (Section
8.5), 259 (Exercises 8-11, 8-12)
positronium, decay of, 260 (Exercise 8-13)
practical synchronization of clocks, 45-46 (Exercises 2-3, 2-4)
pressure of light, 254 (Exercise 8-3), 255
principle of invariance of distance, 4,17
Principle of Maximal Aging, 150
Principle of Relativity, 53-60 (Sections 3.1, 3.2, 3.3)
examples of, 61-62 (Sample Problem 3-1), 78 (Exercise 3-4)
Galilean, 53-55
used in proof of invariance of interval, 73
proof mass (conscience), 277, 279
proper clock, 10
proper distance, 174, 184 (Exercise 6-3)
proper time, 10, 184 (Exercise 6-3)
along a worldline, 148-152 (Section 5.6)
tau as symbol of, 155
proton, described, 235 (Box 8-1)
proton-antiproton pair, creation of, 236
protons, fast, 214-215 (Exercise 7-4)
pulsar, 289
puppy, 224
puzzler, Einstein, 78 (Exercise 3-2)
Pyramid, Great, 209
Pythagorean theorem, 2, 7
quantum electrodynamics, 185 (Exercise 6-4)
quasar, 90-92 (Exercise 3-16), 114 (Exercise L-5), 294-295
radar speed trap, 166-168 (Exercise 5-5)
radiation, Čerenkov, 80-81 (Exercise 3-8)
radiation, gravitational, 288-292 (Section 9.7)
radius of a black hole, 292
railway coach
rising, 47 (Exercise 2-9)
and tidal accelerations, 30-34 (Section 2.3), 281
ray, gamma, see photon
ray, X-, see photon
rays, cosmic, 160, 215-216 (Exercise 7-7)
recoilless processes, 270-271 (Exercise 8-34)
recoil of emitter, energy shift due to, 270 (Exercise 8-33)
red shift, gravitational, 258 (Exercise 8-6), 272 (Exercises 8-37, 8-38)
reference clock, 37
reference event, 38
reference flash, 38
reference frame, 5 ; see also free-float frame
refraction, index of, and speed of light, 185 (Exercise 6-4)
regions of spacetime, 34-36 (Section 2.4), 171-183
(Chapter 6)
relations between events, 172-177 (Section 6.2)
relative acceleration as witness to gravity, 30-36 (Sec-
tions 2.3, 2.4), 280-287 (Sections 9.4, 9.5, 9.6)
relative synchronization of clocks, 130
relativistic chemistry, 254 (Exercise 8-2)
"relativistic" mass, 250-251
relativistic mechanics, 192 (Box 7-1)
relativistic momentum, 217-219 (Exercise 7-12)
relativistic oscillator, 135-136 (Exercise 4-3)
relativity
general, 34, 35, 132 (Box 4-1), 133, 276, 281
principle of, 53-62 (Sections 3.1, 3.2, 3.3), 78
special, 5, 18, 73, 78 (Exercise 3-1), 79 (Exercise
3-6), 131-134 (Section 4.10), 270-273 (Exercises 8-33 to 8-39)
relativity of simultaneity, 62-63 (Section 3.4), 128-131
(Section 4.9)
and contraction of length, 64
See also paradoxes
resonant scattering, 271 (Exercise 8-35)
measurement of Doppler shift by, 271-272 (Exercise $8-36$)
rest energy, 201, 203, 250
"rest mass," 251
Riemann, G. F. B., 295
"rigid body" not an invariant concept, 116-117 (Exer-
cise L-12), 119-120 (Exercise L-14)
rising manhole paradox, 116 (Exercise L-11)
rising railway coach, 47 (Exercise 2-9)
rocket frame, 41-43 (Section 2.9)
rocket, photon, and interstellar travel, 274 (Exercise 8-41)
rods, latticework of, 37-39 (Section 2.6)
Roll, Peter G., 36
rotation or contraction?, 92-93 (Exercise 3-17)
Rumford, Count (Benjamin Thompson), 223
Ruml, Frances Towne, 29
runner on the train paradox, 168 (Exercise 5-7)
sacred unit
mile, 1-4
second, 5-7
Satellite (dog), 26
satellite
conscience-guided, 277-279
pressure of light on, 254 (Exercise 8-3)
scattering
Compton, 229, 231, 267-270 (Exercises 8-29, 8-30, 8-32)
resonant, 271-272 (Exercises 8-35, 8-36)
scissors paradox, 88 (Exercise 3-14)
Schmidt, Maarten, 294
second
defined, 58-59 (Box 3-2)
as sacred unit, 5-7
as unit of distance and time, 11-13 (Section 1.4)
Shalimar, Peace Treaty of $108-109$ (Box L-1)

Sheldon, Eric, 19
shift, see Doppler shift; red shift
Shurcliff, William A., 19, 77, 198, 213
simultaneity,
relativity of, 62-63 (Section 3.4), 64, 128-131 (Section 4.9)
and transverse plane, 66-67
See also paradoxes
Sirius, density of companion of, 258-259 (Exercise 8-7)
skateboard and grid paradox, 116-117 (Exercise L-12)
Smith, Richard C., 19
Sommerfeld, Arthur, 53
solar constant, 242, 254 (Exercise 8-3)
solar wind, 245
space
"absolute" (Newton), 284
as different from time, 18
is ours!, 123-124 (Section 4.4)
spacelike relation between events, 11, 172-177 (Section 6.2)
space travel, practical, 135 (Exercise 4-1)
space war, 79-81 (Exercise 3-7)
spacetime
as absolute elsewhere, 181
active future of, 182
emptiness of, 56-57 (Box 3-1)
exploded view of regions of, 182 (Figure 6-5)
"Et tu . . . ?", 106-107 (Sample Problem L-2)
light cone as partition of, 177-183 (Section 6.3)
Lorentz geometry of, 8, 192 (Box 7-1)
mapmaking in, 164-166 (Exercise 5-3)
neutral region of, 182
overview of, 1-19 (Chapter 1)
passive past of, 182
regions of, 34-36 (Section 2.4), 171-183 (Chapter 6)
surveying, 5-8 (Section 1.2)
touring without reference frame, 160-162 (Section 5.9)
trekking through, 137-163 (Chapter 5)
units of, 20-21 (Exercises 1-2 and 1-3)
unity of, 7, 15-18 (Section 1.5)
unreachable region of, 182
spacetime curvature, 280-287 (Sections 9.4, 9.5, 9.6) contractile, 286-287 (Box 9-1)
equation (Einstein), 286
gravitation as, 284-287 (Section 9.6)
noncontractile, 286-287 (Box 9-1)
spacetime diagram, see spacetime map
spacetime displacement as 4-vector, 191-194
spacetime geometry, see spacetime; spacetime curvature
spacetime interval, see interval; invariance of interval
spacetime map, 22 (Exercise 1-7), 137-139 (Section 5.1)
constructing, 164-166 (Exercise 5-3)
special relativity, 5,18
down with, 79 (Exercise 3-6)
four ideas of, 73
and swimming, 78 (Exercise 3-1)
tests of, 131-134 (Section 4.10), 270-273 (Exercises 8-33 through 8-39)
spectral lines, Doppler broadening of, 264 (Exercise 8-25)
speed, measuring, 40-41 (Section 2.8)
speeding light bulb, 264 (Exercise 8-21)
speeding pipes thought experiment, 66
speeding train thought experiment, 65-66
speed of light, see light speed
speed of walking, maximum, 186 (Exercise 6-6)
speed trap, radar, 166-168 (Exercise 5-5)
speeds, comparing, 20 (Exercise 1-1)
Stanford linear accelerator, 215 (Exercise 7-6)
starlight
aberration of, 81 (Exercise 3-9)
deflection of by Sun, 50-51 (Exercise 2-13)
Starship Enterprise, 106-107
stellar aberration, 81 (Exercise 3-9)
stellar objects, compact, 288-289 (Box 9-2)
storm, communications, 48 (Exercise 2-11)
stretch factor, 99, 155-160 (Section 5.8)
and Lorentz contraction, 157
as measure of speed, 157
stripped down free-float frame, 121-122 (Section 4.2) Sun
conversion of mass to energy in, 242-245 (Sample Problem 8-5)
deflection of starlight by, 50-51 (Exercise 2-13)
Doppler shift at limb of, 264 (Exercise 8-22)
explosion of, 171
gravitational red shift of light from, 258 (Exercise 8-6)
helium in, 242-245 (Sample Problem 8-5)
mass of in units of meters, 258
tide-driving power of, 32-33 (Box 2-1)
sunspot, 179-180 (Sample Problem 6-3)
Super (superluminal bomb), 108-109 (Box L-1)
super cosmic rays, 215-216 (Exercise 7-7)
superluminal expansion of quasar 3C273?, 90-92 (Exercise 3-16)
supernova, 177, 289
super-rocket frame, 69, 71, 140-142
super-speed Super, 112 (Exercise L-1)
surveying spacetime, 5-8 (Section 1.2)
Surveyors, Parable of, 1-4 (Section 1.1), 16-17 (Box 1-1)
swimming and relativity, 78 (Exercise 3-1)
symmetric elastic collision, 240-241 (Sample Problem 8-3).
synchronization of clocks, relative, 130
synchronizing lattice clocks, 37-38, 45-46 (Exercises 2-3, 2-4)
system of particles, 221 (Section 8.1), 244-251 (Section 8-8)
mass of, 214 (Exercise 7-2), 224-228 (Section 8.3), 247-248
not isolated, 228
system property, heat as, 224
tangent vector to worldline, 194-195
tau (Greek τ), symbol for proper time, 155
Taylor
Bradley James, 179
Katherine Rose, 311
Joseph H., 291
Meredith Christine, 171
Samantha Marie, 23 (Exercise 1-10)
teraflop, 22 (Exercise 1-8)
test particle, 36 (Section 2.5), 47-48 (Exercise 2-10)
tests of relativity, 131-134 (Section 4.10), 270-273
(Exercises 8-33 through 8-39)
Thompson, Benjamin (Count Rumford), 223
thought experiments
speeding pipes, 66
speeding train, 65-66
three-vectors, Euclidean, 192 (Box 7-1)
threshold energy, 236, 259 (Exercise 8-12), 261 (Exercise 8-16)
tidal effects of large frame, 30-34 (Section 2.3), 280-
281 (Section 9.4)
tide-driving power of Moon and Sun, 32-33 (Box 2-1)
tides, 32-33 (Box 2-1), 281, 286-287 (Box 9-1)
tilted meter stick paradox 115-116 (Exercise L-10)
time
"absolute" (Newton), 160
as different from space, 18
of an event, 38, 137-139 (Section 5.1)
Hubble, 264
and length, 11-13 (Section 1.4)
and Lorentz transformation, 102
meter of, 12
proper, 10, 148-152 (Section 5.6), 155, 184
wristwatch 10, 148-152 (Section 5.6)
time delay in communication, 39-40
timelike relation between events, 11, 172-177 (Section 6.2)
timelike worldline of a particle, 172
time stretching
experimental evidence of, 131-134 (Section 4.10), 272-273 (Exercise 8-39)
with K^{+}mesons, 72-73 (Sample Problem 3-2)
with mu-mesons, 23-24 (Exercise 1-11)
with pi-plus mesons, 24 (Exercise (1-12)
and spacetime interval, 21 (Exercise 1-4)
See also Twin Paradox
time traveler, 127-128 (Section 4.8)
touring spacetime without a reference frame, 160-162
(Section 5.9)
traffic light, physicist and, 263-264 (Exercise 8-20)
train, mass effects of in collision, 214 (Exercise 7-3)
train paradoxes, 62-63, 168 (Exercise 5-7), 187-188
(Exercise 6-8)
train thought experiment, 65-66
transformation
Galilean, 113 (Exercise L-3)
Lorentz, 95-111 (Special Topic)
transformation of angles, 114-115 (Exercise L-6)
transformation of velocity direction, 115 (Exercises L-7, L-8)
transforming worldlines, 164 (Exercise 5-2)
transverse dimension, invariance of, 65-67 (Section 3.6)
travel, interstellar, 274 (Exercise 8-41)
traveler, time, 127-128 (Section 4.8)
Travelers, Parable of the Two, 281-283 (Section 9.5)
traveling clock, synchronization using, 45-46 (Exercise
2-4)
Treaty of Shalimar, 108-109 (Box L-1)
tree analogy to momenergy, 210
Twin Paradox, 125-126 (Section 4.6)
atomic clocks ("airliner") test of, 131
circling airplane test of, 133
general relativity needed for?, 132 (Box 4-1)
one-way, 135 (Exercise 4-2)
oscillating iron atom test of, 134, 272-273 (Exercise 8-39)
put to rest, 169-170 (Exercise 5-8)
radioactive particle test of, 133
using Doppler shift, 264 (Exercise 8-24)
twins, paradox of identically accelerated, 117-118 (Exercise L-13)
Two Travelers, Parable of, 281-283 (Section 9.5)
unit, same for space and time, 11-13 (Section 1.4)
units, 213 (Table 7-1)
units of energy, 203
units of momenergy, 194
units of momentum, 200
units of spacetime, 11-13 (Section 1.4), 20-21 (Exercises 1-2, 1-3)
unit tangent vector to worldline, 194-195
unity of spacetime, 15-18 (Section 1.5)
universe
expanding, 82 (Exercise 3-10), 264 (Exercise 8-23), 297 (Table 9-2)
models of, 296-297 (Section 9.9)
unreachable region, 182
uranium bomb, 249
uranium fission, 237
use and abuse of the concept of mass, 244-251 (Section 8.8)

Van Dam, Hendrik, 79 (Exercise 3-6)
vector, defined, 192 (Box 7-1)
velocities, addition of, 82-84 (Exercise 3-11), 103-110
(Section L. 7)
velocity
measuring, 40-41 (Section 2.8)
velocity of recession from Doppler shift, 114 (Exercise
L-5), 264 (Exercise 8-23)
velocity of recession from period of light, 82 (Exercise 3-10)
velocity direction, transformation of, 115 (Exercises L-7,
L-8)
Verne, Jules, 25-26
virtual particles, 56-57 (Box 3-1)
visual appearance of relativistic objects, 64, 92-93 (Exercise 3-17)
von Jagow, Peter, 44
walking, maximum speed of, 186 (Exercise 6-6)
war
American Civil, 25
space, 79-81 (Exercise 3-7)
waves, gravity, 288-292 (Section 9.7)
weighing heat, 223
Weights and Measures, General Conference on, 12, 58
Weisskopf, V. W., 296
Weyl, Herman, quote, 189
Wheeler's First Moral Principle, 20
white dwarf star, 258-259 (Exercise 8-7), 288 (Box 9-2)
wind, solar 245
worldline, 143-147 (Section 5.4)
kinked, 152-155 (Section 5.7)
timelike, of a particle, 172
transforming, 164 (Exercise 5-2)
unit tangent vector to, 194-195
wristwatch (proper) time along, 148-152 (Section 5.6)
wristwatch time, $10-11$
along a worldline, 148-152 (Section 5.6)
X-ray, see photon
y-velocity, transformation of, 115 (Exercise L-7)
year as unit of distance and time, 11-13 (Section 1.4)
zero mass for photon, 230
zero-total-momentum frame, 246-251
zoo of particles, backyard, 235 (Box 8-1)

